Python in neuroscience

نویسندگان

  • Eilif Müller
  • James A. Bednar
  • Markus Diesmann
  • Marc-Oliver Gewaltig
  • Michael L. Hines
  • Andrew P. Davison
چکیده

Computation is becoming essential across all sciences, for data acquisition and analysis, automation, and hypothesis testing via modeling and simulation. As a consequence, software development is becoming a critical scientific activity. Training of scientists in programming, software development, and computational thinking (Wilson, 2006), choice of tools, community-building and interoperability are all issues that should be addressed, if we wish to accelerate scientific progress while maintaining standards of correctness and reproducibility. The Python programming language in particular has seen a surge in popularity across the sciences, for reasons which include its readability, modularity, and large standard library. The use of Python as a scientific programming language began to increase with the development of numerical libraries for optimized operations on large arrays in the late 1990s, in which an important development was the merging of the competing Numeric and Numarray packages in 2006 to form NumPy (Oliphant, 2007). As Python and NumPy have gained traction in a given scientific domain, we have seen the emergence of domain-specific ecosystems of open-source Python software developed by scientists. It became clear to us in 2007 that we were on the cusp of an emerging Python in neuroscience ecosystem, particularly in computational neuroscience and neuroimaging, but also in electrophysiological data analysis and in psychophysics. Two major strengths of Python are its modularity and ability to easily “glue” together different programming languages, which together facilitate the interaction of modular components and their composition into larger systems. This focus on reusable components, which has proven its value in commercial and open-source software development (Brooks, 1987), is, we contend, essential for scientific computing in neuroscience, if we are to cope with the increasingly large amounts of data being produced in experimental labs, and if we wish to understand and model the brain in all its complexity. We therefore felt that it was timely and important to raise awareness of the emerging Python in Neuroscience software ecosystem amongst researchers developing Python-based tools, but also in the larger neuroscience community. Our goals were several-fold:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hardware-accelerated interactive data visualization for neuroscience in Python

Large datasets are becoming more and more common in science, particularly in neuroscience where experimental techniques are rapidly evolving. Obtaining interpretable results from raw data can sometimes be done automatically; however, there are numerous situations where there is a need, at all processing stages, to visualize the data in an interactive way. This enables the scientist to gain intu...

متن کامل

pypet: A Python Toolkit for Data Management of Parameter Explorations

pypet (Python parameter exploration toolkit) is a new multi-platform Python toolkit for managing numerical simulations. Sampling the space of model parameters is a key aspect of simulations and numerical experiments. pypet is designed to allow easy and arbitrary sampling of trajectories through a parameter space beyond simple grid searches. pypet collects and stores both simulation parameters a...

متن کامل

ModFossa: A Python Library for Ion Channel Modeling

The creation and simulation of ion channel models using continuous-time Markov processes is a powerful and well-used tool in the field of electrophysiology and ion channel research. While several software packages exist for the purpose of ion channel modeling, none are available as a Python library. In an attempt to provide an easy-to-use, yet powerful Markov model-based ion channel simulator, ...

متن کامل

Technical Integration of Hippocampus, Basal Ganglia and Physical Models for Spatial Navigation

Computational neuroscience is increasingly moving beyond modeling individual neurons or neural systems to consider the integration of multiple models, often constructed by different research groups. We report on our preliminary technical integration of recent hippocampal formation, basal ganglia and physical environment models, together with visualisation tools, as a case study in the use of Py...

متن کامل

PySpike - A Python library for analyzing spike train synchrony

Understanding how the brain functions is one of the biggest challenges of our time. The analysis of experimentally recorded neural firing patterns (spike trains) plays a crucial role in addressing this problem. Here, the PySpike library is introduced, a Python package for spike train analysis providing parameter-free and time-scale independent measures of spike train synchrony. It allows to com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015